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Normal mode spectra of two-dimensional classical atoms confined by a Coulomb potential
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The normal mode spectra of two-dimensional finite clusters of charged partickes donfined by a Cou-
lomb potential resulting from a displaced positive chaZgeare obtained. This is a classical two-dimensional
model system for atoms. We obtain the frequencies of the normal modes as a function of the confinement
chargeZ and the number of particldd. The analysis of the lowest normal mode frequency reveals a good
agreement with the experimental results obtained in a system with screened interaction between charged
particles. The dependence of the normal mode spectra as a function of a perpendicular magnetic field is also
discussed and we found that the shearlike character of the modes is enhanced in the presence of the magnetic
field. For large values of the magnetic fields the normal modes fall into two bands, a low frequency band with
frequency~1/w. and a high frequency band with frequeneyw, .
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[. INTRODUCTION infinity). The possibility to tune the pair interaction potential
or the confinement potential can reveal interesting and non-
Recently, there has been an increased interest in the profrivial behaviors in 2D ordered systeriisd —17.
erties of two-dimensiongRD) systems consisting of a finite The dynamic properties of 2D classical finite systems are
number of charged particles. These bounded clusters are kept fundamental interest. Instead of waves, in finite systems
together by an external field. Electrons in quantum didfs  local normal modes are excited as a response to an external
electrons on the surface of liquid helid®,3], colloidal sus-  excitation. An experimental realizable system in which such
pensions[4], and strongly coupled dusty plasmgs| are  normal modes in 2D clusters have been studied is the com-
some examples and experimental realizations of such 2Rlex dusty plasma. Not like in most ordinary plasmas in
systems. From a theoretical point of view, this is a very in-space and laboratory, which are weakly coupled, a complex
teresting system which offers rich physics with several nonplasma is strongly coupled. It consists of many strongly
trivial effects (i.e., overcharging, phase transitions, Wignercharged dust particles immersed in a gaseous plasma rf dis-
crystallization, and in which the reduced dimensionality and charge. Experimentally the shear and compressional charac-
the finite size of the system allow often an “exact numerical” ter of the modeg8] have been investigated, and this is in
description. agreement with the predicted theoretical respiffs Very re-
Most of the studies in such 2D systems were performeatently, one more ingredient has been added in the study of
by considering the bare Coulomb interaction between thehe normal modes in complex plasmas: an axial magnetic
particles, e.g., see Ref§6,7]. However, recently the 2D field. Depending on the discharge conditions, rigid-body ro-
Debye-Hickel potential was also used as the interaction potation and sheared rotation are obserjE8l. Similar behav-
tential between particles in studying the structure, the meltiors of a dust cluster are observed in an inductively coupled
ing, and the dynamical properties of dusty plasritas11]. rf plasma[19]. A coordinated study of a laboratory experi-
The exponentially screened interaction potential allowed anent found that the charged dust particles in a circle show
good agreement with the experimental results, mainly of thangular rotation in which the structure stays intact, while
normal mode spectif@]. It is important to emphasize that in they oscillate radially around the equilibrium orbit. This os-
all these cases, a parabolic confinement potential was used ¢illatory rotational nature can be explained as a result of
keep the system bounded. This kind of confinement offergoupling between the Lorentz force and the harmonic con-
often a good approximation, but it can cover up some interfinement potentiaJ20].
esting characteristics of the system which depend on the In the present paper, we consider a 2D classical system of
strength of the confinement potential a parabolic confined negatively charged particles interacting through a pure Cou-
system the strength of the potential can be scaled®lit lomb potential, and confined by a punctual positive charge.
Phase transition induced by evaporation of parti€les13  This system is very similar to the amply used 2D model of a
is an example of such a property which depends on thelusty plasma with a parabolic confinement, but it presents
strength and the kind of confinement potential, and which igshe advantage to enable us to tune the strength of the con-
not possible when using a parabolic potentiad., a Cou- finement charg&. In other words, we are considering a com-
lomb type of confinement potential which becomes zero aplex plasma in a nonuniform positive background, in contrast
to the previous models which considered a uniform neutral-
izing positive backgroundthe parabolic confinement poten-
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chargeZ=70 we observed 16 stable configurations, while
for the cluster withN=19 electrons, the maximum number
o) S _ )
T & T of stable states was four, in the case of a confinement charge

Z=100. In general, in order to have sufficient confidence

a that we reached the ground state configuration, we performed
i around 400 tests for each case, where we started each time

: l with a different initial random configuration. However, for
Ze@ """"""""""" clusters with largeN, a greater number of tests is necessary,
mainly if we are close to the complete screened situation
(N=~Z). As an example, for the cluster witk=200 elec-
trons and confinement chargé=200, we obtained 729
metastable states in 1000 tests. The difference in the energy
Setween the ground state configuration, and the energy of the

FIG. 1. Schematic view of the system.

sity of the pair interaction potential, which has a large influ-
ence on the structural and dynamical properties of the clu

ter. In a previous work21] we investigated the ground state metastable configurations was within the rangeLaL0 -,

and the configurational properties of this system and InOII'From all the obtained stable states, the one with the lower

cated the importance of correlation effects. However, in th'jnergy was taken as the ground state configuration. To check
I

paper we mainly concentrate our attention on the behavior o a configuration is stable, we calculated, using the House-

thednormal TOdf. sp(;ctraa Narllt_:lh Its ﬂcorrespo}pdmg NOTM 51 der diagonalization technique, the eigenvalues of the dy-
modes, as a function af andN. The influence of a perpen- ., matrix[7]

dicular magnetic field on the normal modes and eigenvectors

is also studied. 92H
This paper is organized as follows. In Sec. 1l we describe H .z = g

the numerical approach and mathematical model used to ob- al® B

tain the spectra. The results of the normal mode spectra anghich give us the square of the frequencies of the normal
eigenvectors as a function of the confinement charge, thgodes of the systemu( 3=x,y andi,j indicates the particle
number of particles, and the magnetic field are presented iRumbey. The configuration was taken as final when all fre-

()

Sec. . Our conclusions are given in Sec. IV. quencies of the normal modes were positive and real.
In order to compare the frequencies calculated in our
Il. THE MODEL Coulomb confined cluster with the ones for a different con-

finement potentiali.e., parabolig, the values of the frequen-

We study a system wittN negatively charged particles cies were scaled by the factor

(—e), which we call here and further electrons, interacting
through a repulsive pure Coulomb potential and moving in o o2 7

the xy plane. The particles are kept together through a fixed woz_": A\ /_\ﬁ (4)
positive chargeZ e located at a distancafrom the plane the V2 mea® V 2

particles are moving iisee Fig. 1 The total energy of this

Coulomb confined system is given by the Hamiltonian with m the mass of each particle. Equatie#) was obtained
from a comparison between the scaling factor of the energy
7e2 N 1 e2 N 1 in the parabolic confined systefid] and the corresponding
H=— — T —. (1)  factor in the Hamiltonian of our Coulomb confined cluster in
€ i1 r2+a? € ixj=1|r;—r the limit N/Z<1, in which case Eq(2) may be expanded
into

Here the symbok stands for the dielectric constant and

N N

— . ~ e _ 1

{x,y} is the two -component position vector of the 2D eIec. Hapom — (229YN+ S 124 S ——— ()
tron. For convenience, we express the electron energy in pp =1 TR Iri—r
units of E,=e?/ea and all the distances in units af This .
allows us to rewrite Eq(1) in the following dimensionless with the following scaling for the variabled andr:
form:

H—(Z/2)Y*H, r—(2iz2)%. (6)

N N

4 1
H=-2 + —. (2)  The energy in Eq(5) is in unit of Eg=(e* ea)(Z/2)*°. If
N i S R P h i1 we equal this scaling factor with the one which scales the

energy in the parabolic confined systemg,
The ground state configurations of the two-dimensional=(mg,%e*/2¢?)*3 we obtain Eq(4).

system were obtained using the standard Metropolis algo-
rithm (at zero temperatuyend the modified Newton method
[7,22]. The latter method was discussed in R&f. Depend-

ing on the number of particldd and the confinement charge ~ We will start first to discuss the general features of the
Z, different number of stable states can be obtained. For exaormal mode spectrum for Coulomb clusters containing a
ample, for a cluster wittN=70 electrons and confined by a small number of electrons. In particular, we consider the

Ill. RESULTS AND DISCUSSIONS
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FIG. 2. (a) The eigenfrequencies for thd=19 cluster as a olo, olo,

function of Z. The frequencies are in units ef,. The six different i .

regions [(1),(I1),(111),(V),(V),(VI-a,b)] indicate different ground FIG. 3. The density of'state(@OS) as a function of frequency
state configurations. The frequencies of the center of rfeasdes for the N=19 cluster confined by a positive chargg Z=19, (b)
and the breathingtriangles modes are emphasized by different Z=1000, (c) Z=2000, and(d) Z=5000.

symbols. Z=19,1000,2000,5000 as a function of the frequency, is

cluster withN =19 electrons, which was extensively studied shown in Figs. &), 3(b), 3(c), and 3d), respectively. In spite

. . . . of the small number of particles, it is possible to identify the
Serves 36 & Convenent case 1o emphasize partcularies BIESENCS Of WO peaksulg=1.4 andalwy=29 for Z
b P 212000,5000) in the DOS for the cas@=2000 andZ

the present system. We studied the properties of the normal 5000. The behavior shown in Figs(c3 and 3d) is in

mode spectrum as a function of the confinement potential Qualitative agreement with previous results for a 2D classical
more precisely, the positive charge A study of the nature i(:1finite S stegm$23] where tF\)/vot es of waves. with disper-
of the excitationgshearlike or compressionlikeorrespond- Y ' yp ' P

sion relationsw~k (lateral sound wavesand w~+/k (lon-

ing to the different normal modes will also be presented>.”"" : .
Subsequently, we consider the behavior of the normal mO’(:§|tud|nal plasma wavesvere observed. This last one arises

spectrum in the presence of a magnetic field. Different fro rﬁm the long rangeln?tgrte ?;thehCoul_llc()mb |(rjlteract|ﬁmﬁ.. lik
the traditional approach of classical 2D systems, where ese waves are refated 1o the shearlikeé and compression'ike

parabolic confinement potential is considered, the 2D classg‘c’d?s observed In our finite cqnfmed cluster and they will
cal system confined by a Coulomb potential has one extr e discussed later in more detail.

parameter beyond the number of particlds namely, the
confinement charg&. This feature allows us to tune the
strength of the confinement potential which influences th
ground state configurationg1] and the behavior of the nor-
mal modes. We will consider two regimes of confinement:
(1) soft confinement{SFO, in which the number of particles
N is close to the value of the confinement charmgeN~Z;
and (2) strong confinementSTC), in which case the limit
N<Z is reached.

In general, the spectrum moves to higher energies with
increasingZ. With the exception of the trivial mode=0
e(i.e., uniform rotation of the systeimno other frequency is
independent oZ. The normal mode spectrum exhibits a dis-
continuous behavior as a function Bfwhich is indicated in
Fig. 2 by the six different regiongl), (II), (), (IV), (V),
(VlI-a,b)]. This is a consequence of structural phase transi-
tions in the ground state configuration of the cluster. A more
detailed description of these transitions and an analysis of the
lowest normal modes will be given in the next paragraphs.
We also emphasize in Fig. 2 the frequencies of the center of
mass(circles and the breathingtriangles modes. The cen-

In Fig. 2 we present the frequencies of the normal modeger of mass mode, as observed in a parabolic confined cluster,
as a function ofZ for a cluster withN=19 electrons. The is a twofold degenerated vibratigwith frequencyw=2)
frequencies were normalized by the factqy, as defined by of all particles in the same direction and all of them moving
Eq. (4). We observe a clear dependence of the distribution ofn phase, while the breathing mode corresponds to a vibra-
modes for differen values. In the SFC regime most of the tion of the mean squared radius of the clusteith fre-
normal modes are concentrated around small frequencieguencyw=/6). These special modes were fourid to be
while in the STC regime the normal mode frequencies aréndependent of the number of particles and are a property of
more uniformly spread out over a larger frequency rangethe particular form of the parabolic confinement. In our Cou-
The distribution of normal mode frequencies is similar for alllomb confinement potential case, the observation of such
N values, and it is better observed by defining the density ofmodes is possible only in the limit of the STC regifre-
states(DOS). It is the number of frequencies in the interval gions(V), (VI-a), and(VI-b) of Fig. 2]. However, we noticed
Sw= wnad40, wherew,,, is the maximal frequency. The that the frequencies of the center of mass mode become de-
DOS for clusters wititN= 19 electrons, confined by charges generate only in regiofVI), where the ground state configu-

A. Small clusters
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10 10 210 10 2x10° 5x1032 10 2x10° sponding to theN =19 cluster with different confinement charges in

the different regions shown in Fig. Z:=5000[(a),(b)—region(VI-

FIG. 4. () The frequencies of the intershell rotation mode 0)]; Z=2000[(c),(d)—region(VI-a)]; Z=500[(e),(f)—region(V)];
(squaresand of the vortex-antivortex excitatiostars as a func-  £= 75 [(@).(h)—region (IV)]; Z=50 [(i),(j)—region (IV)]; Z=30
tion of Z for theN=19 cluster(b) The frequencies of theNMs as  [(K).(D—region ()], Z=22 [(m),(n)—region (I)]; Z=19
a function of Z for the same clustexc) A more detailed view of [(0).(p)—region (1)]. The solid circles represent the charged par-
region (V). The six regions were labeld(),(b)] in order to sepa- ticles in thexy plane, while the arrows indicate the eigenvectors of
rate different ground state configurations, which are indicated in théhe normal modes.
figure.
confinement potential, which is not observed in the case of

ration of the cluster is (1,6,12) and it coincides with thatp‘"‘rl""bc’lcijC conf.igem.ent.h fthe | ! mod
observed in the parabolic confinement case. The degenerac n Ollr erttr(]) : _entlfytt € na;tcutrhe of the cg[vest norma tm_o e
of the frequency of the center of mass mode can serve as? well as the Importance of Iné parameiewe present in

good test that the cluster is in the parabolic confinemen Ig. 4 the irequencies OT the lowest normal mode, the fre-
regime quency of the vortex-antivortex mode, and the frequency of

The lowest nonzero normal modeNM) frequency is the intershell rotation for each value. More specifically, in

i ) - ! Fig. 4(b) the frequencies of the lowest normal modes are
associated with the stability of the ground state configuragy g yn a5 a function o for a cluster withN=19 electrons.
tion. It tells us how easy or difficult th_e configuration may be e 5150 present in Fig.(8 the frequencies corresponding to
deformed. As previously presented in REf] for the para-  {he excitation of a vortex-antivortex paistars and the in-
bolic confinement case, the LNM corresponding to the interyershell rotation modésquares Six regions were labeled in
shell rotation(ISR) depends on the configuration of the clus- order to indicate the different ground state configurations,
ter. Commensurate configurations are more stable againgihich are also indicated in the figures. For example, the
ISR, and present a high value for the activation frequency otonfiguration (1,7,11) means one particle in the center, seven
this mode. In the opposite case, incommensurate configurgarticles in first ring, and 11 particles in the second ring. We
tions can be easily excited in the ISR mode and corresponstart our analysis in the limit of the STC regime, regi¢u$
to a very small frequency. In the 2D Coulomb confined clus-and (VI). For Z=120 only two stable configurations were
ter a similar dependence of the LNM frequency as a functiorobtained, namely, (1,6,12) and (1,7,11), and depending on
of the configuration of the cluster was observed. Clustershe confinement chargg one of them corresponds to the
with a commensurate configuration presented a high activaground state configuration. In regig¥I-b), Z=5000, the
tion frequency for the ISR mode. However, the appearanceommensurate ground state configuration (1,6,12) has the
of the ISR mode also depends on the strength of the confind-=NM corresponding to the ISFFigs. 5a) and §b)]. This is
ment potential. As an example, the cluster witk-12 elec- the expected behavior, since in the lilitcZ the confined
trons and ground state configuratiGh8) may be activated Coulomb system behaves like a parabolic confined cluster
in two different LNMs. ForZ=45 the LNM is a vortex- [21]. The value of the LNM frequency &,/ wy~0.681,
antivortex pair, while forZ=48 the corresponding LNM is for Z=5000, which is very close to the observed value for
an intershell rotation. In the 2D Coulomb confined clusterthe system with a parabolic confinement,,,/w,~0.668
the chargeZ plays the dominant role in determining the low- [7]. The vortex-antivortex pair excitation was observed with
est normal mode. This is a particular feature of the Coulomla frequency very close to the one for the ISR modéd,
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~0.683). In regionVI-a), 2000<Z<5000, the ground state
configuration is still(1,6,12. However, a surprising change
in the character of the LNM is observdéig. 4(c)]. The
lowest normal mode becomes now a vortex-antivortex mode
which has a smaller activation frequenglyigs. 5c) and
5(d)]. This feature clearly illustrates that the LNM can be
tuned by the strength of the confinement potential. A similar
behavior was observed for different number of particles. It is
also interesting to note that no significant modification is
observed in the value of the LNM frequency when we
change the value aZ from region(VI-b) to region(Vl-a),

which has the same ground state configuratieae Fig. 00k —F—r S F o

4(c)]. The ISR mode is still observed in regigWl-a) , but 0 5 10 15 20 25 30 35 40 45 50

now with a slightly higher activation frequency. In Figch N

we emphasize the transition in the LNM frequency in the

region (V1). In region (VI-b) the lowest normal mode fre- FIG. 6. Eigenfrequencies as a function éf The confinement

quency corresponds to the intershell rotation mode, while irfharge isZ=50. The frequencies are in units f. The frequen-
region (VI-a) it is changed, corresponding now to a vortex- ¢ies of the center of masgircles and the breathingtriangles
antivortex pair. modes are emphasized by different symbols.

For 80<Z<2000, regionV), the ground state configura-
tion is (1,7,11), and the configuration (1,6,12) is now a
metastable state. The LNM corresponding to the new groun

The LNM is an asymmetric vortex-antivortex pdiFig.
g(n)]. The entire cluster exhibits a mirror symmetry with
respect to the dotted line in Fig(rf), but there is no rota-
ﬁié)nal symmetry as in the STC regime. Finally 6= 22, we
are in the almost charge compensated case, regjipwith
configuration (1,5,7,6]Fig. 50)]. The associated LNM is
presented in Fig. ), and it corresponds to a symmetric
vortex-antivortex pair. A local circular symmetric configura-

auency betveen region) and (1), whch s assoiated 0115 GDseved o he ot i olecon, Th efect
with a structural phase transition in the cluster. It is worth to Y y P

comment here that configurations as well as LNMs like thoses tc:?enngtgl %tnSt?:unglsstt?ai?:r?argicif:rg igf tgii;?nzgfen;ﬁgg
present in regiongV) and (VI) were recently observed in P P Y

dusty plasma with a parabolic confinemei®s], and in by the internal ones. As a consequence, the positional corre-

which the particles interact through a screened coulomb pol-atlor1S between the_ electrons overcome t_he symmetry of t_he
tential[7,8,11]. confinement potential. The maximum radius of the cluster in

The transition from regior(V) to region (IV), 48<Z this region is one order of magnitude larger than the one in

<80, is characterized by a structural phase transition to thz[ahe STC regime. Itis worth to comment that the ISR rotation

new ground state configuration (2,7,1[Big. 5g)], and a fode was not observed in regiofis and (1.
jump in the value of the LNM frequency. The frequency of
the ISR mode observed in regi®iV) [Fig. 5(h)] is one order
of magnitude larger than the one in regi@f). The increase In this section we analyze the frequencies of the normal
in the LNM frequency is due to the formation of a new shell. modes for clusters with differemd, but submitted to a con-
The energy to activate the ISR mode in the configuratiorstant confinement potentiéfixed Z). For this, we consid-
(1,7,11) is lower than the necessary energy to activate theredZ=50 and varied the number of particles frdts=2 up
same mode in the configuration (2,7,10). As a consequencé N=50. The main features of the ground state configura-
if we decrease the confinement strengthwe still observe tions in this case were previously presented in Rai].

the configuration (2,7,10)Fig. 5(i)], but now with the LNM  Here we limit ourselves to the results for the dynamical
as shown in Fig. §), which is similar in character to a properties.

vortex-antivortex pair. Once more, we noticed that for the In Fig. 6 the frequencies of the normal modes are pre-
same configuration different LNMs may be activated. With asented as a function di. Only the frequencyw=0, which
further decrease of the system exhibits a new structural represents a rotation of the entire cluster aroundzties, is
transition to regior(lll ), 26<Z<48, with ground state con- independent oN. An indication of the behavior of the center
figuration (3,8,8)[Fig. 5k)]. The system self-organizes into of mass(open circles and the breathindopen triangles

an incommensurate configuration with three shells. The comodes as a function of the rathyZ is also shown in Fig. 6.
responding LNM presented an unexpected asymmetry aAs observed before in Fig. 2, the frequencies of these modes
shown in Fig. %l), which is a mixture of an intershell rota- decrease with increasing/Z. The degenerate frequency of
tion and a vortex-antivortex pair excitation. Decreasing evenhe center of mass mode is observed only in the clusdters
further the value ofZ, we reach region(ll), 22<7<26, =3,4,5,6,7,8, and once more this corresponds to the same
where the ground state configuration is (4,8[Fjg. 5(m)].  ground state configurations observed in the parabolic case.

associated frequency is very sméibr Z=1900 the LNM
frequency iswmin/wo=5.97X10"°, while for Z=80 the
LNM frequency iswmin/wo=1.86X10"2). As shown in
Fig. 4(b), there is a pronounced difference in the LNM fre-

B. Constant confinement and large clusters
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clustersN=200: (c) Z=200 and(d) Z=4000.
FIG. 7. Eigenvectors for th =50 cluster confined by the posi-

tive chargez=50. (a) the LNM k=2, and(b) the modek=95. the z component of the vorticity‘ix,&) of the eigenvectors

, field, following the approach of Ref$7,11]. The z compo-
Curiously the_ clusters’N=15 and N=16 also present a nant of the rotory; (k) =&, rof (k)] and the divergence
degenerated-like center of magsm,) mode, but the ground wa(K)=div[ (k)] of the field of eigenvectors are
state configurations are different from the parabolic case. The

main characteristic shown in Fig6) is again the high con- 1 N

centration of modes with small activation frequencies in the (k)= N E wé'i(k), (79
SFC regimeN~Z. We can understand this behavior taking =1

the clusteN =50 (Z=50) as an example. In the SFC regime N

the maximum radius of the cluster is one order of magnitude (k)= 1 S 2K (7b)
larger than the one in the STC regirf26]. The large dis- ' N P

tance between the electrons localized at the border of the

cluster makes the confinement of these particles very weaK.he values ofyg (k) and ¢, ;(k) for the ith particle are
This fact allows the excitation of modes with low frequen- given by

cies. In fact, we observe that the external electrons are more

affected in the low frequency modes, while the core electrons 1 M (Fi—Fm)- [,&i(k) —,&m( k)]
are practically frozen. This is shown in Fig(al, where we Yai(K)=31 mZ:1 RraE , (83
plotted the eigenvectors for the LNMnode numbek=2, bem
wl wy=3.574x10"3) for a cluster withN=Z=50 electrons. Mo . . s .
In the high frequency region there is an inversion, and the ) — 1 D |(Fi = Fm) LAV (K) = A(K)]]

iy i(K)= — , (8D
core electrons are more affected than the external ones, as M n=1 |Fi—F o

can be observed in Fig(B) for a mode excited in the high
frequency regionmode numbek=95, w/wy=2.373). In  wheremis the index and/ the number of neighboring par-
the limit N/Z<1, the graphic of the density of states is simi- ticles of particlei, ', is the positional coordinate of a neigh-
lar to the one plotted in Fig.(d). boring particle, and\; (k) is the eigenvector of particliefor

In general, we found that the relatiddiZ determines how modek.
the frequencies of the normal modes are distributed, and this |n Figs. §c) and &d) we plot (k) (solid line) and, (k)
is valid in a large interval oN [27]. In order to show this (dotted ling as a function of frequency for clusters wibh
behavior for large systems, we present in Figs) &nd 8b) =200, confined by =200 andZ=4000. The frequency de-
the DOS for clusters wittN=200 electrons, which are con- pendence Of the rotwr(k) and the divergenca/d(k) de_
fined by positive charge2=200 andZ=4000, respectively. pend on the ratid\/Z. In the STC regime there is a clear
As previously observed_in small clusters, the DOS is !arge inseparation in frequency space betwee(k) andyy(k). The
the low frequencies region, whe=Z. In the STC regime, shearlike modes are excited in the low frequency region,
the appearance of two broad maxima is connected to shegfhijle the compression-like modes are activated in the
like and ComprESSion'”ke modes. This is derrlorlstrated bgecond_ha” of the spectrum. In the SFC regime’ the diver-
calculating the spatial average of the divergenteA) and  gence behaves very differently. The quantiy(k) increases

066405-6



NORMAL MODE SPECTRA OF TWO-DIMENSIONA . .. PHYSICAL REVIEW E 68, 066405 (2003

Y T

monotonically as a function of frequency, and it does not s[ T " ]
exhibit a plateau like region as in Fig(dB. Again, the rotor, (a) =50 N=10

i.e., the shearlike mode, is appreciably different from zero 4
only in the low frequency region. From Fig. 7 we note that,

in the SFC regime, the shearlike modes are more related to o
excitations at the border of the cluster, while the compres- §
sionlike modes mainly excite particles in the internal part of 8
the system.

C. The magnetic field dependence

As is already known, the magnetic field does not change 0 1 2 3 4
the energy of a classical system of charged particles, and (00/0)0
consequently also not the structure of the 2D classical system
of charges. This is a consequence of the nature of the mag- T T T T

netic force, which only acts on moving particles. On the st(b) Z=50 N=50 -
other hand, the motion of charged particles in a magnetic _z: ; H
field is significantly affected, and this is directly reflected on 4r szzzsf: ;i
the normal modes of the system. We followed H&B] to 80 3 i ,i'i' |
calculate the normal modes of the system in the presence of \8 i
a perpendicular magnetic field. To obtain the normal modes 2 . . i}
of a finite system in this case, we assumed an oscillatory i @~ &
solution of each particle around its equilibrium position, 1% ¥ T-
namely, A.(t)=RgR,e'“'], for every particle m j : ;i
=1,... N. The resulting equations of motion for they 0 o 3 2
coordinates can be summarized in the following expression: ® /")o

[+

2 .
wd —H +lwwee,3,00m Rz m=0, 9
(0% 0apnm~Hapnm & apzdnm Rp.m © FIG. 9. Frequencies of the normal modes as a function of the

cyclotron frequency. The number of particldsand the confinement

wherea,B=x,y, n,m=12,... N, Rg , is the particle dis- chargeZ are indicated in the figure.

placement from its equilibrium position;,, 5, is the Levi-
civita tensor,d,5 nm and é,, are the Kronecker deltag,

. ) value of the frequencies decreases with the cyclotron fre-
the cyclotron frequency,=+—1, andw the frequencies of a Y

h | mod h fh ic fiel uency. In spite of the reduced number of particles, this be-
the normal modes. Due to the presence of the magnetic fieldior is in qualitative agreement with the experimentally

the set of Eqs.(9) have complex.solut.ions. As a conse- ,pcarved spectrum of a gas of electrorgensity
quence, the eigenvectors have an imaginary component indL 1 8 cm™2) trapped in surface states above a liquid-helium
cating that the response of the system is no longer in phasg tace[29]. The nonzero width of the two-branch spectrum
with an applied oscillating electric 1:|eld, and e;\ach part|cleiS not observed in an infinite system, and this effect is a
performs a rotational motion un(t) =RgRy]coswt  consequence of the finite size of the cluster. The lower
—Im[R,,]sinwt. Differently from the zero magnetic field branch of frequencies was associated with the edge magne-
case, we have now to plot the real and imaginary parts of theoplasmons. In our finite cluster we found that some excita-
eigenvectors. As a reference case, we mention here the soltiien modes are characterized by the circular motion of all
tion of the simple problem of a charged particle confined byparticles around their respective equilibrium positions with
a parabolic potential moving in a plane, and in the presencaniform velocity. This case is characterized by the real and
of a perpendicular uniform magnetic field. The normalthe imaginary components of eigenvectors perpendicular to
modes of the particle correspond to an oscillatory motioreach other, and with the same magnitude. In another kind of
around its equilibrium position in a circular trajectory. It is excitation mode, only some particles in the cluster have a
important to emphasize that the real and imaginary compoeircular uniform motion, while the other ones have there real
nents of the eigenvector are perpendicular to each other, arahd imaginary components nonperpendicular to each other,
of equal magnitude in this case, indicating that they have éndicating that the particles move in a noncircular trajectory
difference of phase equal to(2-1)7/2 (n=0,1,2,3...).  around their respective equilibrium positions. In order to il-
We will see that in a many-body system this is no longer thdustrate these modes, we show in Fig. 10 the (gatk ar-
case. rows) and imaginary(thin arrows components of the eigen-

In Fig. 9 we show a typical spectrum as a function of thevectors field for the clustel=3 (Z=50) in the presence of
cyclotron frequencyn. obtained for clusters withi=10 and  a uniform magnetic field withw./wy=2.0. The modesk
N=50 (Z=50) electrons. The frequencies are split into two=1,2,3 are in the lower band, while the modes4,5,6 are
sets or bands with the same number of modes, which we caiih the upper bandsee Fig. 12 In this case N=3, Z
now “up” band, in which the frequencies follow the cyclo- =50) we noticed that the modé&s-2,3,4,5 have the real and
tron frequency(dotted ling, and “down” band, in which the the imaginary components of the eigenvectors already per-
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k=1 k=2 1 3.0

\ S 2.5
/ 2.0

1.5

: : 2 ]
PN o 05p oM [oforo32] :

a)/co0

k=3 1 k=

i =1 ’
0.0 [rimmeseepmissomemosmemmspasesensentosssssssonpaseosossmapeessmonmrangesssssestn]
0.0 0.5 10 1.5 2.0
=5 k=6
- L o fo,
~7 \ ) FIG. 12. Frequencies of the normal modes as a function of the
A cyclotron frequency for the cluster withi=3 and confinement

chargeZ=50. The numbers indicating each mode are presented in

the figure.

FIG. 10. Real(thick arrows and imaginary(thin arrows com-
ponents of the eigenvectors for the clusié+=3, Z=50 in the the eigenvectors’field. In the zero magnetic field regime, we
presence of a perpendicular magnetic field wg=2 . found that in the small frequency limit the modes are mostly

shearlike in character, i.e., large value fip(k), while in the

pendicular to each other, and of equal magnit(tie mode high frequency limit they are mainly compressional, i.e.,
k=1, w/wy=0, does not have imaginary componerfor  large value foryy(k) [Figs. §c) and &d)]. This behavior is
lager values ofv, the modek=6 also behaves like the other valid in both regimes of confineme(B8TC and SFC In Fig.
modes, indicating the circular uniform motion of the par- 11 the quantitieg/y(k) andy, (k) (for the real and the imagi-
ticles. In other words, for a sufficiently high value of the nary components of the eigenvectors’ fielde presented as
magnetic field the normal modes correspond to a circulaa function of frequency for clusters witi=10 (Z=10,50)
uniform motion of the particles around their respective equi-lectrons under nonzero magnetic fielol.(wy=10). Inde-
librium positions. pendently of the confinement regime, we notice that the rotor

In order to characterize the change of the nature of thés substantially different from zero in the high frequency re-
modes in the presence of a magnetic field, we resort to thgion of each band, which is in contrast to the zero magnetic
calculation of the divergencéy(k) and the rotory, (k) of  field case. The divergence also presents a different behavior
since it is smaller than the rotor in the high frequency limit

01— @ R A S (b) of the I_ow frequ_e_ncy band. Thus the nature _of t_he modes is
oos|? roal 0.04 imagln;r; essenhally_modlfled by the magnetic flel_d which mtrodu_ces a
£ oo} € om} clear rotational component to the motion of the particles,

z > £ which as a consequence enhange&k).

3; It 5 A ?;, o g }\" o In Fig. 12 the frequencies of the normal modes for the
°~°2‘?;A m \ oot &\%\Q\g ﬁ N clusterN=3 (Z=50) are presented as a function of the cy-
000 Ae=ten B o0 000 clotron frequency. Folw./wy=0.32 the excitation of the

w/o, oo, center of mass corresponds to the mokie® andk=3. For
o5 _ ‘ o3 ‘ ' the val_ue of the magnetic field./wy~0.32 there is an an- _
b 250 N=10 a/0=10 (C) (250 N=10 oja=10 (d) ticrossing, and the modes are changed such that the excita-

o real ool § @ imaginary tion of the center of mass now corresponds to the mddes

T o3 o 3 1. oo =2 andk=4. As can be observed in Fig. 12, there is no

2 o2 g . crossing between the modks 3 andk=4, but a modifica-

> ol o0 A\A > L ﬁ-\w tion of the character of each of the excitation modes occurs.
oo &QM\A Ai& 4 ‘/ylgbﬁ\ A For larger values of the confinement chaigethe gap be-

Wor 05 63 B IE IS *go0r0z 0'3:/ 01102103104 tween the mode&roundw./wy~0.32) k=3 andk=4 be-
ol % comes very small. On the other hand, for smaliehe gap

FIG. 11. The divergence/y and the rotory, of the real and Detween the modek=3 andk=4 increases, which is in-
imaginary components of the eigenvectors field for clusters withdicative of a stronger interaction between the two modes,
N=10 and (a) Z=10—real component(b) Z=10—imaginary and which is a consequence of the increased importance of
component,(c) Z=50—real component(d) Z=50—imaginary the nonparabolic nature of the confinement potential.
component, in the presence of an axial magnetic field wy The real and the imaginary parts of the eigenvectors are
=10. not always directed perpendicular to each other, as already
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Real (@) that under an applied magnetic field the degenerated c.m.
mode is split due to the fact that the magnetic field couples

thex- andy directions . One of the c.m. modes is observed in
~ ! the lower band, while the other one in the upper band. This is
- a consequence of the coupling between the restoring force
\ ~ due to the positive charge and the magnetic force. When the
\ magnetic force is in the same direction of the electric force,

J/ the total restoring force is large, leading to the upper fre-
quency. On the other hand, when the forces are in opposite
directions, the resulting restoring force is small leading to a

Imaginary/ (b) frequency which diminishes with increasing magnetic field,
/ i.e., it behaves as &, for large w.
! / ~
/ IV. CONCLUSIONS
/
— ~ We studied numerically the normal mode spectra of a
~ two-dimensional classical system consistingdfegative

charged particles bounded by a Coulomb potential. he
negative particles are kept together by a positive charge
located at a distance from the plane where the electrons are
allowed to move. The normal mode frequencies were calcu-
lated numerically as a function @andN. Depending on the
ratio N/Z different distributions of modes were observed. An
r\%inalysis of the lowest normal mode frequency showed that in

. , ®he limit N/Z<1, the experimental results observed in dusty
eigenvectors for the clustét=10 (Z=50) (in the presence 1asmas are very similar to the results found in the present
of @ magnetic fieldo./wo=1.6) are presented for the mode gy qtem The normal modes observed in our pure Coulomb
k=3. As can be observed both components exhibit avortexéystem and those in the screened Coulomb system under

antivortex pair excitation which are 90° rotated with respect,a aplic confinement are obtained by tuning the value of the
to each other. Most of the real-imaginary components of th%ositive chargeZ.

eigenvectors are not perpendicular to each other, and also The normal mode spectrum in the presence of a perpen-

they do not have the same magpnitude. These features indicalg,,jar magnetic field was also calculated. The frequencies

]'Ehat thelpa_:ticles have rotational motion, but with a nonuni-5¢ the normal modes are strongly dependent on the magnetic
orm velocity.

, . , field intensity and on the ratibl/Z. The presence of some
As was shown in Sec. Il B, in the SFC regimBtZ)  oqes with frequencies that decrease with increasing mag-
and for the zero magnetic field case, there is a high conceryeic field is in agreement with the resonant spectra observed
tration of modes with small frequen_mes. A similar d|str|bu—.in an electron gas above a liquid-helium surface, in spite of
tion of modes was also observed in the nonzero magnetifye requced number of particles in the present system. The

field case. However, the interesting feature here is that thespaarlike” character of the modes is increased with increas-
distribution of modes, like the one in the zero magnetic flelding value of the magnetic field.

case, occurs in each band, as can be clearly seen in(Big. 9
Most of the modes are concentrated in the lower part of both
the upper and the lower bands. In the STC regime the distri-
bution of frequencies in each band is like that presented in
the zero magnetic field ca$€ig. 2—region(VI)]. We also W.P.F. and G.A.F. were supported by the Brazilian Na-
observed that in the STC regime the coupling between th&onal Research CouncilCNPg, CAPE$ and the Ministry
frequencies in the upper band with the cyclotron frequencyf Planning(FINEP). Fruitful discussions with A. Vagov and
occurs for higher values of the magnetic field than in theB. Partoens are gratefully acknowledged. Part of this work
SFC case. was supported by the Flemish Science FoundateWwO-

In the STC regime, where the system behaves like a para#l), the “Onderzoeksraad van de Universiteit Antwerpen”
bolic confined cluster, a c.m. mode is observed. We noticéGOA), and the EU-RTN network on “Surface electrons.”

FIG. 13. Real(a) and imaginary(b) components of the eigen-
vectors for the mod&= 3 of the clusteN=10, Z=50 in the pres-
ence of a perpendicular magnetic field/ wy=1.6.

commented. An example of such a behavior is illustrated i
Fig. 13, where the real and imaginary components of th
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